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We consider systems whose steady states exhibit a nonequilibrium phase transition from an active
state to one —among an infinite number—absorbing state, as some control parameter is varied across a
threshold value. The pair contact process, stochastic fixed-energy sandpiles, activated random walks,
and many other cellular automata or reaction-diffusion processes are covered by our analysis. We argue
that the upper-critical dimension below which anomalous fluctuation driven scaling appears is dc � 6,
in contrast to a widespread belief. We provide the exponents governing the critical behavior close to or at
the transition point to first order in an " � 6� d expansion.
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Absorbing-state phase transitions.—Nonequilibrium
phase transitions between an active and an absorbing state
are encountered in a variety of fields ranging from chemi-
cal kinetics to the spreading of computer viruses [1].
From a theoretical standpoint absorbing-state transitions
form natural counterparts to equilibrium phase transi-
tions. The transition rates used in the stochastic dynamics
employed to model the physical phenomenon under con-
sideration do not satisfy detailed balance (with respect to
an a priori defined energy function). In spite of this ap-
parent freedom, the number of universality classes that
the transition can fall into is incredibly small. Among
known universality classes, that of directed percolation
(DP) is by far the broadest. And indeed, in the absence of
additional symmetries or conservation laws, as was
conjectured 20 years ago by Grassberger [2], an
absorbing-state transition will invariably fall into the DP
universality class. Only if the dynamics possess addi-
tional features such as particle number parity conserva-
tion, or the coupling to an auxiliary field (whether
conserved or not, static or diffusing, etc.), or the existence
of an infinite number of absorbing states, will the tran-
sition belong to a new class. Apart from the formal
interest in classifying nonequilibrium phase transitions
and in identifying which microscopic ingredients make
a transition belong to a given universality class, there
exists a greater challenge. As recently summarized by
Hinrichsen [3], in spite of its domination in the theoreti-
cal physics literature, the directed percolation universal-
ity class was actually never observed in a real experiment.
This is often attributed to the presence of defects in a real
experiment (DP is known to be very sensitive to quenched
disorder) or to other ill-controlled effects, such as a hid-
den conservation law or a coupling to an auxiliary field.

On one hand, the interest in absorbing-state transitions
was recently enhanced by the discovery by Vespignani
and co-workers [4] of their relationship with the ubiqui-
tous phenomenon of self-organized criticality (SOC) [5].
It was established that the scaling behavior observed there
was entirely governed by an underlying phase transition

(thereby, incidentally, tempering the mystics of SOC). On
the other hand, in a separate wave of articles, research has
focused on absorbing-state transitions in which the order
parameter freezes into one among an infinity of absorbing
states, but without any additional conservation law. The
paradigmatic example of a system showing such a behav-
ior is the pair contact process, initially introduced
by Jensen and Dickman [6], for which Muñoz and co-
workers [7] devised a convincing phenomenological pic-
ture that we shall later use as our starting point.

The existence of an infinite number of absorbing states
(in the large-system limit) and the coupling to an auxil-
iary static field are the common characteristics to the
microscopic models that we wish to investigate here.

It is the purpose of the present work to provide a full
renormalization group picture of the phase transition at
work in systems possessing an infinite number of absorb-
ing states, with or without an additional conservation law.
We shall rely on a phenomenological Langevin approach
as a starting point. From there we shall show how re-
normalization group arguments can be applied. This will
lead us to finding the upper-critical dimension of those
models. Then we will sketch the reasoning leading to the
expression of the critical exponents within the framework
of an expansion around the upper-critical dimension. As
will be clear there is interesting new physics to learn from
the many technical obstacles that pave the way to the full
scaling picture.

We now turn to a presentation of two microscopic
models chosen for their representativeness and ease of
formulation in which the absorbing-state phase transi-
tions we wish to study appear. We also introduce the
Langevin equations encoding their dynamics. Then we
sketch the field-theoretic line of reasoning leading to the
computation of the critical exponents. Finally, we provide
a critical discussion of our results in the light of the
existing literature.

Two models and their phenomenological coarse-

grained description.—In the pair contact process (PCP),
particles are thrown on a lattice. A pair may either
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annihilate A� A! ; or produce a single offspring A�
A! A� A� A. Each lattice site can be occupied by at
most one particle. Since isolated particles cannot diffuse,
a configuration in which pairs of nearest neighbors are
absent remains frozen in time. The order parameter  is
local density of pairs of nearest neighbor particles and the
control parameter is the branching over annihilation rate
ratio. The Langevin equation believed to describe the
dynamics of  was coined by Muñoz et al [7]. It reads

PCP:@t �r; t� � D�
r
 �r; t� � � �r; t� � g1 

2�r; t�

� g3 �r; t�e
�
R
t

0
dt0 �r;t0� � ��r; t�; (1)

with � a Gaussian white noise whose correlations are
h��r; t���r0; t0�i � g2 �

�d��r� r
0���t� t0�. The coeffi-

cients �; g1; g2, and g3 are coarse-grained analogs of
the reaction rates. The memory term is the signature of
the feedback of isolated particles on the pair dynamics.
For a detailed explanation of the physical origin of the
various contributions appearing in Eq. (1) we refer the
reader to [7]. The list of microscopic models whose
coarse-grained description is believed to be encoded in
the Langevin Eq. (1) also includes the transfer threshold
process [8] and various models for catalysis (the dimer
reaction [6], the dimer-dimer [9], or the dimer-trimer
models [10]). A detailed analysis of the mean-field prop-
erties of this equation was provided by Muñoz et al. [7].

The second family of models that we are interested in
is embodied by the so-called Manna or stochastic fixed-
energy sandpiles (FES) [4,11,12]. Grains of energy are
initially randomly distributed on a lattice. Whenever a
lattice site is occupied by more than two particles (in
dimension d) the excess particles randomly hop to a
nearest neighbor site. The number of active sites plays
the role of the order parameter. The total number of
particles is strictly conserved. An evolution equation for
the local density of active sites  was recently proposed
by Dickman et al. [4]. It reads

FES: @t � D�
r
 �r; t� � � �r; t� � g1 

2�r; t�

� g4 �r; t�
Z t

0

dt0 �
r
 �r; t0� � ��r; t�; (2)

with �’s correlations having the same expression as in the
PCP case and the coefficients �; g1; g2; g4 are coarse-
grained analogs of the microscopic transition rates which
depend on the conserved quantity. The nonlocal memory
term expresses that space fluctuations of the static and
conserved field have a feedback effect upon the order
parameter dynamics. Again a rich variety of models
were shown to be described by the same coarse-grained
dynamics, such as the conserved transfer threshold pro-
cess, activated random walkers [13], or some model for
epidemic spreading in which healthy individuals are
static [14].

There are some hazards in relying on naı̈vely built
phenomenological equations as many other interactions

are generated by a coarse-graining procedure. In prin-
ciple, all terms allowed by symmetries should be in-
cluded. We shall later see that, indeed, some relevant
symmetry-preserving terms have to be considered. Let
us now recall the common mean-field behavior of those
models. Denoting for both models by � the deviation of
the control parameter from its critical threshold value, in
the steady state the order parameter behaves as

 

�

/ j�j�; �! 0�;
� 0; �  0:

(3)

In mean field we simply have  � ��=g1. At the critical
point, the order parameter decays according to

 �t� � t��; t large: (4)

The correlation length and the relaxation time diverge as
�! 0 according to �� j�j�� and �� j�j��z, respec-
tively. Within the framework of a mean-field analysis one
finds the following values for the critical exponents:
� � 1, � � 1, � � 1

2
, and z � 2.

Analytic strategy.—The interplay between short-time
and short-distance fluctuations with long range correla-
tions lies at the heart of the anomalous scaling observed
in the vicinity of a critical point (‘‘anomalous’’ to be
understood as non-mean-field). Short-distance singulari-
ties (usually referred to as ultraviolet divergencies)
govern the way scaling properties deviate from their
mean-field expressions. The usual strategy is to retain
the leading UV divergencies and to perform a renormal-
ization group analysis with those only. In the vast major-
ity of cases, this is sufficient to reach physical conclusions.
Sometimes, however, contributions that were thrown
away in the course of the analysis are crucial in preserv-
ing the correct physics, though they are irrelevant in
determining the renormalization group fixed point. This
is the present situation.

Let us start with the PCP. The picture is the following.
We expand the exponential memory term and find that the
contribution g3 

R
t
0
 exhibits the leading short-time and

short-distance singularity. Power counting shows that the
bare dimension of g2g3 is d� 6 (in units of a length).
This type of interaction is known to describe the dynami-
cal percolation universality class [15,16], which has an
upper-critical dimension dc � 6. Yet, in the present case,
the phase diagram would not be reproduced correctly if
only the truncated expansion of the exponential were
kept. As seen on the mean-field evolution equation, and
as already noted many times in the literature [7], the
asymptotics are governed by the local nonlinear term
�g1 

2 in Eq. (1). However, g1g2 has bare dimension
d� 4 which signals that it is in fact a dangerously irrele-
vant coupling, along with the subsequent powers of the
argument of the exponential. The coupling g1 is not
relevant in determining the underlying fixed-point struc-
ture but essential in preserving the overall phase diagram.
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An important consequence is that the usual scaling as-
sumption for the order parameter

h �t�i � b��d���=2F �b�zt; b1=�j�j�; b large (5)

must be abandoned since the scaling function F will
exhibit a singular behavior in the g1 variable as the latter
approaches 0. In mean field F depends on g1 as 1=g1.
While irrelevant variables are traditionally omitted from
the list of arguments of F , in the present case this would
lead to unphysical conclusions. The next step is to see how
this dangerously irrelevant coupling g1 is renormalized to
0 in the vicinity of the dynamical percolation fixed point
(a necessity overlooked in [7]). In order to do this we have
followed the technical procedure recalled by Janssen and
Schmittmann [17] (see also the references therein). We
skip all technical steps [18], and merely quote the final
result: g1�b� � b�2��"=7� as the coarse-graining scale b is
increased. We have denoted by " � 6� d and the result
for the exponent is given to first order in ". In order to
obtain the leading " behavior we have combined the
mean-field expression for the scaling function F appear-
ing in Eq. (5) as far as its g1�b� dependence is concerned
with the scaling properties of the field, time, and � at the
dynamical percolation fixed point. This has led us to the
following critical exponents:

� � 1�
3

14
"; � � 1�

1

4
"; (6)

the expressions of which are given to leading order in
" � 6� d.

As far as the FES described by Eq. (2) are concerned,
the situation is a bit more delicate. A rather involved RG
analysis [18] shows that in fact the dynamical percolation
vertices are generated already at one-loop order (the one-
loop graph obtained by connecting g2 and two g4’s leads
to effective g1 and g3 vertices, and no effective g4). This
is because, as is very often the case with gradient inter-
actions, the short-scale behavior of the memory term
�g4 �r; t�

R
t
0
dt0�

r
 �r; t0� converts into an effective

�g3 �r; t�
R
t
0
dt0 �r; t0� contribution (and higher powers)

after coarse graining. This also explains the failure of
power counting directly on (2) which, naively performed,
would lead to the erroneous conclusion that dc � 4 since
g2g4 has bare dimension d� 4 while g2g3 has dimension
d� 6. And then we may apply the reasoning of the
previous paragraph and the results of Eq. (6) continue to
hold for FES.

What the field-theory approach teaches us can be sum-
marized as follows. First, a detailed analysis of the re-
normalized interactions shows that both classes of models
considered are described by the same-field theory which
has an upper-critical dimension dc � 6. This result is in
contradiction with the existing literature of the last ten
years [19]. Critical exponents are expected to behave

differently from mean field in space dimensions d < 6.
We have determined the critical exponents of the phase
transition to leading order in " � 6� d. As to FES-like
systems, at the renormalization flow fixed point, the con-
servation law is irrelevant. This seemingly innocuous
property leads to technical difficulties since the conser-
vation law is crucial in saving the overall phase diagram.
In both the PCP and the FES cases, while the underlying
fixed point is that of dynamical percolation, computing
the critical exponents requires one to perform an inde-
pendent renormalization of an irrelevant coupling. Thus
the critical exponents cannot be deduced from those of
percolation by means of hyperscaling relations. The va-
lidity of our approach holds in the vicinity of dc � 6. As d
is lowered, already at d � 4 new qualitative features show
up in the theory. Since the percolation fixed point becomes
trivial in d � 1 an entirely new picture must inevitably
set in as dimension is lowered, perhaps as early as d is
decreased below d � 4, and possibly again at d � 2.
Splitting of the universality classes of the PCP and FES
in low space dimensions must be envisaged as well.

There are several criticisms that can be opposed to the
present work. First of all, the use of phenomenological
Langevin equations sometimes proves hazardous, but,
fortunately other formalisms [20] allow exact mappings
onto field theories having exactly the same features as
the ones discussed in this work. Indeed, the effective
Langevin Eq. (2) used for sandpiles is, strictly speaking,
not correct, since coarse graining (loop corrections)
shows that other dominant terms are generated. Most
importantly, however, we must admit that there is abso-
lutely no numerical evidence supporting our findings. An
obviously too concise summary of the numerical state of
affairs is that both FES [21] and PCP belong to the DP
class in dimension one (recent studies disagree with the
results of [21], such as [22]). But as dimension is in-
creased PCP is still found to belong to the DP class while
FES are found to form an independent universality class.
Lübeck, in some recent simulations [23], claims that
dc � 4 by performing simulations directly in high di-
mensions. A cheap way out for the theoretician is to refer
the reader to a recent paper by Grassberger [24] in the
somewhat different but related context of forest fires in
which dynamical percolation plays some role as well.
There numerical proof is provided that it might well be
impossible with present day computers to ever reach the
true asymptotic scaling regime. We recall that there are
many obstacles on the numerical side: the impossibility to
use simple finite-size scaling relations (due to the pres-
ence of a dangerously irrelevant operator). Quenched
disorder (for FES [25]) and other long-term memories
are known to be difficult to overcome numerically, and
finally the proximity of the directed percolation fixed
point whose influence must be felt until the system even-
tually crosses over to its actual asymptotics. All of those
features, we fear, play a part in rendering the reaching of
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the true asymptotics a hopeless endeavor. As far as the
observed lack of universality of spreading exponents is
concerned [7] we believe that the phenomenon can be
understood within a renormalization group picture. As
demonstrated in a much simpler case in [27] spreading
exponents exhibit nonuniversal values that depend on the
moments of the initial distribution of both the order
parameter and auxiliary fields. This dependence is all
the stronger as the initial distribution deviates from a
strict Poissonian law. In less favorable cases the initial
distribution introduces couplings at the initial time that
cannot even be renormalized, thus questioning the exis-
tence of a scaling regime.

As a conclusion we summarize our findings. We have
provided field-theoretic arguments showing that a large
number of stochastic processes exhibiting a phase tran-
sition between an active state and an absorbing state
(picked up among an infinite number of such) belong to
the universality class of dynamical percolation and there-
fore have dc � 6 as their upper-critical dimension (in-
stead of dc � 4 as appears in the last decade literature).
The existence of a static field to which the order parame-
ter is coupled is the common feature to all considered
models. We have provided expressions for the critical
exponents within the framework of renormalized pertur-
bation theory in the vicinity of the upper-critical dimen-
sion to leading order in " � 6� d. A technical account of
the results presented in this Letter is in preparation [18].
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